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SUMMARY

A discussion of the Opik-Singer theory of the density of

a planetary exosphere is presented. Their density formula

permits the calculation of the depth of the exosphere. Since

the correctness of their derivation of the basic formula for

the density distribution has been questioned, an alternate

method based directly on Liouville's theorem is given. It is

concluded that the Opik-Singer formula seems valid for the

ballistic component of the exosphere, but for a complete de-

scription of the planetary exosphere, the ionized and bound-

orbit components must also be included.
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INTRODUCTION

Recently Opik and Singer (Reference 1) have developed a theory which gives the bal-

listic component of the neutral density distribution in a planetary exosphere. Their theory

assumes that above the base of the exosphere, collisions may be entirely neglected -- at

least as far as an approximate calculation of the neutral density profile is concerned. The

particles at the base of the exosphere are assumed to be in a truncated Maxwellian distri-

bution, with no incoming particles at greater than escape velocities. The absence of such

incoming particles implies a sink, located at some distance from the planet, which pre-

vents the eventual build-up of a full Maxwellian distribution above the escape level; and

this prevents an extension of the barometric law beyond the base of the exosphere. The

bound-orbit and ionized components of the exosphere are omitted in the original Opik-

Singer development (however, see Reference 2). Other theories of the exosphere have

been developed by Johnson and Fish (Reference 3) and by Chamberlain (Reference 4).

This paper will present several comments on the _pik-Singer theory of the exosphere.

First, since the correctness of their derivation of the basic formula for the density dis-

tribution (Equation 12 of Reference 1) has been questioned (Reference 5), it is worthwhile

to present an alternate derivation of their formula for the density, based directly on Liou-

ville's theorem. Second, a relatively simple analytic expression for the density distri-

bution can be obtained which replaces the numerical integration required in the Opik-Singer

theory. The density formula permits a calculation of the depth of the exosphere, that is,

the number of particles per unit area in a column extending from the base of the exosphere

to infinity. This quantity is relevant to calculations of the escape of a planetary atmos-

phere.



EQUATIONS FOR THE DENSITY OF THE EXOSPHERE

The formula for the density p(r) can be derived directly from the one-particle form

of Liouville's theorem, which states that the density of particles in phase space, f(r,_)

is constant along particle trajectories:

f(?,_) = f(R,_0), (1)

where _ is the velocity of a particle at position ? and _o is the velocity that the same

particle had at the base of the exosphere, located on a sphere at _. In the absence of col-

lisions, _. _ and _o,_ are related by the conservation of energy and of angular momentum:

I
b=a
O

t_

v = _/Vv02 2_ (1 - £) (2a)
- T

v sin 8 = voY sin 8o (2b)

where M is the mass of the planet, G is the gravitational constant, and Y is P,/r.The

angles e and 8o are the angles the trajectory makes with the radius vector passing through

the center of the planet. These angles are defined with respect to the orbital plane. We

shall assume in the following discussion that the density and temperature at the base of the

exosphere are constants and therefore independent of the angular co-ordinates of _. The

spacial density p(r) is then

Equation 1 then allows us to write:

p(r) : f f(F,_) d_. (3)

p(r) = f f(R,_0) d_. (4)

In Equations 3 and 4, the range of integration d_ extends over all velocity space compatible

with Equations 2a and 2b; that is, only over those orbits intersecting the spherical surfaces

at _ and F. In order to evaluate the integral in Equation 4 we introduce the Jacoblan,

J(v, 8/v o, 8o) , which transforms the integration over d_ to one over d_ o :

p(r) = v 2 sin 8 f(R'_o) J _ dv0 d00 " (5)



The Jacobian may be evaluated by using Equations 2a and 2b:

v, _? Y cos _0

(6)

Again using Equations 2a and 2b, we eliminate v and 0 from Equation 5 and use Equa-

tion 6:

3
v 0 cos _0 sin _0 dvo dOo

Vvo _ (i- y2 sin2 ;9o) 2_,tG(1 - Y)---_-

(7)

Opik and Singer's Equation 12 may be obtained from Equation 7 ifwe replace f(_,_0) by

a truncated Maxwellian distributionwhich omits incoming particles with velocities greater

than escape velocity.

The integration in Equation 7 can be performed to give pCr) in terms of known func-

tions:

p(r) = Po(R)

where

I (1 )e "*<l-Y) 1 -_-erf vax_

o(v_ -- 1
_ _ y2 e l÷Y 1 - "_ err (8)

a = R/H,

H = scale height,

po(R) = density at the critical level, and

= 2--_ _x e-Y2dy.erf x V_"

CONCLUDING REMARKS

When considering the above distribution, we first notice that as a -, _, the barometric

law for the density variation is obtained. Secondly, we observe that ;(R) is not equal to

;0(R), the density just below the base of the exosphere. The reason for this is that we have



omittedall incoming particles with velocities greater than escape velocity. This discon-

tinuity results from arbitrarily neglecting all collisions above the escape level, and a

more realistic theory would replace the sharp boundary of :he escape level by a diffuse

zone above which collisions gradually become less likely.

The density profile, Equation 8, is characterized by a parameter a = IUH, but not in

too transparent a way. This parameter determines the extent of the exosphere, and in or-

der to gain some insight into this matter, we have calculated the quantity d :

d : YR p(r) dr. (O)

In the conventional theory of escape of a planetary atmosphere, d is taken to be equal to

p0H , with H being the scale height at the base of the exosphere. In Figure 1, the ratio

d/P0H is plotted as a function of a. For orientation, we may note that for the earth's

exosphere a = 4.5 for atomic hydrogen and a = 72 for atomic oxygen, provided we take a

temperature of 1500°K at the base of the exosphere. In the limit as _ approaches zero,

H approaches infinity, d becomes independent of a, and p aecomes proportional to 1/r 2.

For large values of a, d approaches Poll; in other words, there is one scale height of

atmosphere above the escape level. This result has been used by Various investigators

(Reference 6) in their studies of the escape of atmospheres, but their justification for its "
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Figure 1 - Variation of the ratio d/Poll with the parameter a. The integrated neutral

exosphere density is given by d in Equation 8. In the con,'entional theory of the escape

of a planetary atmosphere, d is set equal to p0 H.



use applies to stellar rather than to planetary atmospheres. The Opik-Singer theory

seems to provide a valid justification for its use in the case of the ballistic component of

the exosphere; however, it should be stressed that the ionized and bound-orbit components

must be included for a complete description of a planetary exosphere. For example,

Singer (Reference 7) has suggested that in the earth's exosphere the dominant components

above 1800 kilometers may be 0+ and H +. Opik and Singer have recently published a sup-

plemental discussion of the bound orbit component. Their findings indicate that this com-

ponent is unimportant in the earth's exosphere, but may be important in the exospheres

of the major planets (Reference 2).
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